Author Affiliations
Abstract
1 State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
2 Department of Chemistry, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon Hong Kong, China
Since the first report of aggregation-induced emission (AIE) concept in 2001, it has received intense attentions from academy and industry because of its important applications in diverse research fronts. Up to now, the luminogens with AIE property (AIEgens) have been widely used in optoelectronic devices, fluorescent bioprobes and chemosensors, and researchers have also committed to exploring the potentials of AIEgens in other cross-cutting areas. The AIEgens have shown superior advantages such as highly efficient emissions in the aggregated state and thus exhibited better performances in comparison with traditional luminescent materials whose emissions are usually quenched upon aggregate formation. In view of the significant achievements of AIEgens in recent years, this review presents representative advancements of AIEgens for the applications in organic optoelectronic devices, mainly including organic light-emitting diodes (OLEDs), circularly polarized luminescence (CPL) devices, electrofluorochromic (EFC) devices, luminescent solar concentrators (LSCs), and liquid crystal displays (LCDs). Not only the design strategies of AIEgens for these optoelectronic devices are analyzed, but also their structure-property relationship and working mechanism are elucidated. It is foreseeable that robust AIEgens with specific functionalities will find more and more applications in various research fields and play an increasingly important role in high-tech devices.
PhotoniX
2020, 1(1): 11
作者单位
摘要
1 College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
2 Guangdong Innovative Research Team, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology,Guangzhou 510640, China
3 Center for Display Research, The Hong Kong University of Science & Technology, Kowloon, Hong Kong, China
4 Department of Chemistry, Division of Biomedical Engineering, Division of Life Science, The Hong Kong University of Science & Technology,Kowloon, Hong Kong, China
By melting tetraphenylethene (TPE) and 1,2,4,5-tetraphenyl-1H-imidazole (TPI) units together through different linking positions, three new fluorophores are synthesized, and their optical, electronic and electroluminescence (EL) properties are fully studied. Owing to the presence of TPE unit(s), these fluorophores are weak emitters in solutions, but are induced to emit strongly in the aggregated state, presenting typical aggregation-induced emission characteristics. The experimental and computational results reveal that different connection patterns between TPE and TPI could impact the molecular conjugation greatly, leading to varied emission wavelength, fluorescence quantum yield and EL performance in organic light emitting diodes (OLEDs). The fluorophore built by attaching TPE unit to the 1-position of imidazole ring shows bluest fluorescence, and its EL device emits at deep blue region (445 nm; CIE = (0.16, 0.15)). And the device based on the fluorophore by linking TPE to the 2- position of imidazole ring shows EL at 467 nm (CIE = (0.17, 0.22)) with good efficiencies of 3.17 cd·A–1, and 1.77%.
aggregation-induced emission (AIE) aggregation-induced emission (AIE) tetraphenylethene(TPE) tetraphenylethene(TPE) imidazole imidazole blue fluorescence blue fluorescence organic organic 
Frontiers of Optoelectronics
2015, 8(3): 274

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!